Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes
نویسندگان
چکیده
Dye-sensitized solar cells (DSCs) provide a promising third-generation photovoltaic concept based on the spectral sensitization of a wide-bandgap metal oxide. Although the nanocrystalline TiO2 photoelectrode of a DSC consists of sintered nanoparticles, there are few studies on the nanoscale properties. We focus on the microscopic work function and surface photovoltage (SPV) determination of TiO2 photoelectrodes using Kelvin probe force microscopy in combination with a tunable illumination system. A comparison of the surface potentials for TiO2 photoelectrodes sensitized with two different dyes, i.e., the standard dye N719 and a copper(I) bis(imine) complex, reveals an inverse orientation of the surface dipole. A higher surface potential was determined for an N719 photoelectrode. The surface potential increase due to the surface dipole correlates with a higher DSC performance. Concluding from this, microscopic surface potential variations, attributed to the complex nanostructure of the photoelectrode, influence the DSC performance. For both bare and sensitized TiO2 photoelectrodes, the measurements reveal microscopic inhomogeneities of more than 100 mV in the work function and show recombination time differences at different locations. The bandgap of 3.2 eV, determined by SPV spectroscopy, remained constant throughout the TiO2 layer. The effect of the built-in potential on the DSC performance at the TiO2/SnO2:F interface, investigated on a nanometer scale by KPFM measurements under visible light illumination, has not been resolved so far.
منابع مشابه
Comparing the photocatalytic activity of TiO2 at macro- and microscopic scales
This study focuses on the characterization of photocatalytic TiO2 coatings using Kelvin probe force microscopy. While most photocatalytic experiments are carried out at a macroscopic scale, Kelvin probe force microscopy is a microscopic technique that is surface sensitive. In order to link microscale results to macroscopic experiments, a simple method to establish the relation between Kelvin pr...
متن کاملThe electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells
Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realize...
متن کاملThe resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license.
متن کاملFractal Nature of Metallic and Insulating Domain Configurations in a VO2 Thin Film Revealed by Kelvin Probe Force Microscopy
We investigated the surface work function (WS) and its spatial distribution for epitaxial VO2/TiO2 thin films using Kelvin probe force microscopy (KPFM). Nearly grain-boundary-free samples allowed observation of metallic and insulating domains with distinct WS values, throughout the metal-insulator transition. The metallic fraction, estimated from WS maps, describes the evolution of the resista...
متن کاملIncorporating TiO2 nanotubes with a peptide of D-amino K122-4 (D) for enhanced mechanical and photocatalytic properties
Titanium dioxide (TiO2) nanotubes are promising for a wide variety of potential applications in energy, biomedical and environmental sectors. However, their low mechanical strength and wide band gap limit their widespread technological use. This article reports our recent efforts to increase the mechanical strength of TiO2 nanotubes with lowered band gap by immobilizing a peptide of D-amino K12...
متن کامل